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Abstract. This paper describes an end-to-end training methodology for
CNN-based fine-grained vehicle model classification. The method relies
exclusively on images, without using complicated architectures. No extra
annotations, pose normalization or part localization are needed. Different
full CNN-based models are trained and validated using CompCars [31]
dataset, for a total of 431 different car models. We obtained a top-1
validation accuracy of 97.62% which substantially outperforms previous
works.
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1 Introduction

Fine-grained classification of cars, also known as model classification, has a great 
interest for a considerable number of applications such as traffic regulation, 
surveillance, tolls automation or parking monitoring. This task can be extremely 
challenging due to big similarities and subtle differences between related car 
models, differences that can be easily lost with changes in location, viewpoint or 
pose. Most of fine-grained classification methods make use of techniques such as 
pose normalization, part localization [8] and modeling [18] or additional anno-
tations to accomplish this task. As a result complex models are obtained and a 
large amount of time is spent labelling datasets.

In this paper we propose an end-to-end training methodology for CNN-based 
fine-grained vehicle model classification (see Fig. 1). Our method relies exclu-
sively on images, without using complicated architectures, extra annotations, 
pose normalization or part localization. Different full CNN-based models have 
been trained and validated using CompCars [31] dataset and with our method-
ology we substantially outperform previous works obtaining a top-1 validation 
accuracy of 97.62% for a total of 431 different car models.
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Fig. 1. General overview of the proposed methodology.

2 Related Work

Nowadays, there is a large amount of datasets of fine-grained categories, among
which we can find birds [2,27,29], flowers [1,21], dogs [10,16], leaves [14], aircrafts
[20,26] and cars [12,31]. Many approaches have been used in order to improve
fine-grained classification tasks, like 3D object representations [12], pose normal-
ization [3] or part localization [11,32].

Prior to the popularization of CNNs, classification tasks laid on hand-crafted
features such as HOG [5], SIFT [19] or more recent visual word features like [4,
28,30] used together with classifiers like SVM. Thus, in December 2013, Krause
et al. [12] proposed a method to extract 3D model based features. Jointly, they
presented the ultra-fine-grained BMW10 dataset and the cars196 dataset. In
[3], Branson et al. proposed an architecture to normalize the pose of birds and
extract features using CNNs that will be fed to a SVM classifier. Following this
line, Zhang et al. [32] presented a method to semantically localize key parts of
objects and extract the features from them. Krause et al. [11] also proposed a
method to align the images through segmentation to extract the pose without
part annotations, making the training process easier.

In [18], Llorca et al. presented a vehicle model recognition approach by mod-
eling the geometry and appearance of car emblems from rear view images using
a linear SVM classifier with HOG features. Classification is performed within
the set of models of each car manufacturer, which is previously recognized by
means of logo classification [17]. Lin et al. [15], instead of manually defining the
parts of the objects from which the features will be extracted, used bilinear net-
works to automatically extract the features with two twin CNNs and multiplex
its outputs to feed them to a SVM. In [8], Fang et al. developed a coarse-to-fine
method in which they automatically detect discriminative regions and extract
features to feed them to a one-versus-all SVM.

Since the appearance of AlexNet [13] in 2012 the use of CNNs has growth
considerably. The appearance of other architectures like VGG [22], GoogLeNet/
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Inception [25] or ResNet [9] as evolution confirms that CNNs have come to
stay. For example, in [31], Yang et al. presented CompCars, a dataset for fine-
grained car classification and verification. This is the largest car dataset to date,
with a total of 208, 826 images extracted from two scenarios, web-nature and
surveillance-nature, from which, 136, 727 images are of entire cars from the web-
nature scenario and 44, 481 from the surveillance one. They also made various
experiments, finding out that the best results are achieved when the model is
fine-tuned using images from all viewpoints, and compared the performance of
different deep models.

In [23] and [24] Sochor et al. proposed a system for vehicle recognition on traf-
fic surveillance. This method consisted of using additional data like 3D bounding
box of vehicles, with which the vehicles are “unpacked” to obtain an aligned
representation of them. Dehghan et al. [6] described the details of Sighthound’s
vehicle make, model and color recognition system. As this is a private com-
mercial solution they didn’t showed the full system, but they tested it in mul-
tiple datasets like CompCars, which can be used for performance comparison
purposes.

3 System Description and Results

As we have previously introduced we are going to use CompCars dataset. Specif-
ically a subset of 431 different car models with a total of 52 083 images, 36 456
for training and 15 627 for validation.

In order to carry out the different experiments and compare their results, a
basic architecture will be used on which modifications will be made. This basic
architecture is an Imagenet [7] pretrained ResNet50 model fine-tuned for 50
epochs with a constant learning rate of 0.001 for all layers. The loss function
used is cross entropy and stochastic gradient descent with 0.9 momentum as
optimizer.

We have tried a variety of modifications over the data (data-augmentation),
different models (ResNet50, ResNet101 and InceptionV3) and different fine-
tuning approaches and learning rate policies.

The top-1 and top-5 validation accuracy achieved with this base configuration
is 88.49% and 97.45%.

3.1 Ratio Adaptation

CompCars images come in a variety of sizes and aspect ratios. One problem of
fully connected classification CNNs is that input images have to be of a given
size (224× 224 pixels for ResNet and 299× 299 pixels for Inception). So, to feed
these images into the CNN we need to resize them to fit the expected sizes. The
problem is that all images that do not have a 1:1 aspect ratio will be deformed
in the resizing process.

This could be an obstacle to the network learning. To discern if this is the
case, we have developed an experiment: in the process of training each image is
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padded with two vertical or horizontal bands to adapt its ratio and prevent the
deformation. An example of this operation can be seen in Fig. 2(b).

We found that the top-1 accuracy drops from 88.49% to 82.12% when the
ratio is adapted. This is a 6.37% loss in accuracy. This could be explained
by the fact that the net is losing generalization capacity because of the verti-
cal/horizontal bands that are being introduced in the images provoking a reduc-
tion in the area with relevant information.

Moreover, even if the images are deformed, the network has the ability to
learn and interpret the content. So, the ratio adaptation technique has been
discarded.

3.2 Data-Augmentation

Data augmentation its a common tool used in deep learning to artificially incre-
ment datasets. Its use is compulsory when available data is limited as it helps to
fight overfitting. Although in our case the dataset that we are going to use has
a huge amount of images, we can get benefit from data augmentation. To do so,
we have implemented the following data augmentation operations:

(a) Original (b) 1:1 ratio

(c) Flip (d) Shear (e) S&P (f) Poisson noise

(g) Speckle noise (h) Blur (i) Color Casting (j) Color jittering

Fig. 2. Data augmentation and ratio adaptation examples

• Horizontal Flip: an horizontal flip (over y axis) with a probability of 50% is
performed over the image.

• Salt and Pepper : each pixel of the image is set to 0 or 255 with a probability
of 2%.
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• Poisson noise.
• Speckle noise.
• Bluring : gaussian blur operation is performed over the image with a random

kernel size between 3 and 11 and standard deviation of 6.
• Color Casting.
• Color Jittering : the image is converted to HSV color space and saturation

and value are independently randomly modified.

An example of the previous described data augmentation operations can be seen
in Fig. 2.

The process of data augmentation is as follows: in first place an horizontal
flip its applied over the image, then, one of the other operations is randomly
selected. This data augmentation process is computed online for each batch,
therefore, all the images are slightly different in each epoch.

With this configuration we achieved a 95.48% top-1 validation accuracy,
which is an improvement of 6.99% over the base model.

3.3 Learning Rate Policies

Until now, the learning rate used has remained constant during the training. A
commonly used tool is to implement learning rate policies to modify it through-
out the training. Of all those that have been tested, the one that has obtained
the best results is the stepped one. This is, reduce the learning rate every n
epochs.

In our case, we have added to the previous best model (base model + data
augmentation) a 10-step policy rate (divide by 10 the learning rate every 10
epochs).

With this configuration we achieved a 97.03% top-1 validation accuracy,
which is 1.55% better.

3.4 Fine-Tuning Process

As we previously said, we have been fine-tuning the model using the pretrained
weights on Imagenet. As we have changed the last fully connected layers in
order to adapt the network, this weights are randomly initialized, so, they have
a difference in training compared with the rest of the network. An interesting
approach is to train the fully connected layer alone and after that, the full
network as we have been doing. We call this process 2-step fine-tuning.

After having tried multiple combinations of learning rate policies with 2-step
fine-tuning the best results have been obtained when using constant learning
rate in the fully connected training and 10-step in the full training.

With this configuration we achieved a 97.16% top-1 validation accuracy.



CNNs for Fine-Grained Car Model Classification

3.5 Other Models

So far Resnet50 has been used as the base model. In orther to achieve best results
we have tried deeper models as Resnet101 and InceptionV3. After multiple train-
ings and configurations the best results for each model have been achieved with
the 2-step fine-tuning process for both of them and constant+10-step learning
rate policy in the case of Resnet101 and 10-step for InveptionV3.

With this configuration we achieved a 97.59% and 97.62% top-1 validation
accuracy for Resnet101 and InceptionV3 respectively.

The best result was obtained with InceptionV3 with a top-1 validation accu-
racy of 97.62%.

A comparison of the different models can be seen in Table 1. Figure 3 shows
some examples of the classification results with validation images.

Table 1. Results of the different configurations.

Model Ratio/data-

augmentation

Fine-tuning Lr policy Top-1/5 validation

accuracy (%)

ResNet50 (base model) ✗/✗ Full Constant 88.49/97.45

ResNet50 ✓/✗ Full Constant 82.12/92.21

ResNet50 ✗/✓ Full Constant 95.48/99.26

ResNet50 ✗/✓ Full Step-10 97.03/99.62

ResNet50 ✗/✓ 2-step Constant+10-step 97.16/99.60

ResNet101 ✗/✓ 2-step Constant+10-step 97.59/99.68

InceptionV3 ✗/✓ 2-step Step-10 97.62/99.64

Yang et al. (CompCars) – – – 91.20/98.10

Sighthound – – – 95.88/99.53

Fig. 3. Fine-grained classification results. Three correct classifications (left) and one
error (right).

4 Conclusions and Future Works

In this paper we have described an end-to-end training methodology for CNN-
based fine-grained vehicle model classification. Compared to other methods, our
proposal relies exclusively on images, without using complicated architectures or
high time demanding datasets (pose normalization, part localization, extra info,
etc.).
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Data augmentation has been found to significantly improve performance,
even with a large dataset. The use of 2-step fine-tuning and adaptive learn-
ing rate allows the system to reach the best results and by combining it with
data augmentation we achieve 97.62% top-1 accuracy which outperform previ-
ous models like the one proposed by Yang et al. [31] or the private commercial
solution from Sighthound [6].

As future work we have identified two promising lines. The first one is to
adapt the system to track and reidentify vehicles in complex traffic scenes, which
has a great potential in traffic surveillance. The second one is a classification
reinforcement method based on pose and structural modeling in orther to achieve
better results with an even wider variety of car models.
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