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Abstract: The accurate prediction of road user behaviour is of paramount importance for the design
and implementation of effective trajectory prediction systems. Advances in this domain have recently
been centred on incorporating the social interactions between agents in a scene through the use of
RNNs. Transformers have become a very useful alternative to solve this problem by making use
of positional information in a straightforward fashion. The proposed model leverages positional
information together with underlying information of the scenario through goals in the digital map,
in addition to the velocity and heading of the agent, to predict vehicle trajectories in a prediction
horizon of up to 5 s. This approach allows the model to generate multimodal trajectories, considering
different possible actions for each agent, being tested on a variety of urban scenarios, including
intersections, and roundabouts, achieving state-of-the-art performance in terms of generalization
capability, providing an alternative to more complex models.

Keywords: trajectory prediction; urban scenarios; transformer; intelligent transportation systems

1. Introduction

Motion forecasting is a vital component in the pipeline of an autonomous vehicle. It
involves predicting the future motion of other vehicles, pedestrians, bicycles, and other
objects in the environment in which the autonomous vehicle is operating. This information
is crucial for the vehicle to make safe and efficient decisions, such as determining when to
change lanes, slow down, or stop. Without accurate motion forecasting, the autonomous
vehicle may make unsafe decisions or fail to respond in a timely manner to the actions of
other road users. Moreover, forecasting is necessary and currently used for the creation of
realistic simulations to test and validate the performance of autonomous vehicles before
hitting the road, as well as essential for the development of cooperative systems, where
multiple agents, both autonomous and human-driven, share the road. It allows the au-
tonomous vehicle to anticipate the actions of other road users and plan its own motion
accordingly, ensuring safe and efficient interactions.

In autonomous driving, it is essential to understand each driving situation in order
to anticipate the trajectories of other agents. In each driving scenario, agents will react
differently depending on traffic conditions and road structure. By knowing the behaviour
of an agent a certain number of seconds in advance, it is possible to anticipate decisions,
increasing safety and comfort for subsequent manoeuvrers. Usually, agents will tend to
take trajectories that are ideal for their goal, avoiding collisions and being socially accepted,
i.e., following traffic rules and interacting with other agents on the road.

The problem of pedestrian trajectory prediction has been broadly explored by the
community in the past years, being generally classified into two categories according to
the type of analysis: pedestrians in crowded areas, where there may be erratic movements
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due to low speed and avoidance of potential collisions, and environments shared with
vehicles and other agents, where the traffic density is reduced but inter-class interaction is
incorporated. This work, summarized as shown in Figure 1, continues the evolution of the
previous one [1], essentially inspired by the initial research developed on pedestrians [2].
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Figure 1. System overview.

2. Related Work

In the early stages of trajectory prediction, classical approaches relied essentially on
linear regression, Bayesian filtering or Markov decision process. These methods performed
properly, but since they are based on physical variables, their scaling and generalization are
quite limited. After the arrival of deep learning, and specifically RNNs and LSTMs, it was
found that they could successfully model the relationships between agents, exploiting their
time dependency to predict future vehicle manoeuvrers [3,4] and trajectories [5]. In this
context of social approaches, S-LSTM [6] was proposed, connecting neighbouring LSTMs
using a social pooling layer, predicting trajectories for multiple pedestrians. A similar
approach was presented in [7] for vehicles. This was refined by SR-LSTM, making use
of a message passing framework to enhance social nature [8]. Some models also propose
an occupancy grid to define the interaction between agents [9,10]. Other authors have
followed the line of generating a set of acceptable trajectories using architectures such
as GAN [11,12] and CVAE [13]. In GAN, the generator and discriminator are used in a
complementary way to improve the generation and detection of valid trajectories, while
CVAE is used to encode in a latent space and generate multi-path trajectories based on the
observed paths.

Using the Vanilla-TF as a model, the context-augmented Transformer network [14]
uses interaction and semantic information as the input to provide robust prediction on
datasets with strong pedestrian–vehicle interactions, similar to the inD dataset.

In parallel to these deep learning-based approaches, OSP [15] proposes a traditional
probabilistic approach, developing a pedestrian–vehicle interaction model that outperforms
models such as S-GAN and MATF with real-time execution speed that is really convenient.

Although LSTMs seem to be a good model for learning trajectory sequences, they are
inefficient at modelling data in long temporal sequences, and thus suffer more from the
lack of input data in observations, a very common issue in real systems involving physical
sensors. In this way, Transformer models [16] have been successfully adapted to predict
pedestrian trajectories in crowded spaces [2], achieving state-of-the-art results in TrajNet
benchmark [17], by relying only on self positional information (i.e., without adding any



Eng. Proc. 2023, 39, 57 3 of 11

social or interactive data). Moving beyond pedestrians, this paper will focus on vehicle
trajectories, whose interaction is rather intense in the environments analysed (intersections
and roundabouts).

Recent work has explored including the road graph, history and interaction between
agents using more sophisticated models and a bespoke architecture for each type of in-
put [18]. Whereas, others have employed images and detections of mixed traffic environ-
ments to provide an explainable nature to their model, developing an important analysis
concerning this issue [19].

In this work, a Transformer model is used in its simplest form, exploiting its nature
to adapt the inputs and improve the results without major changes in the architecture
that could lead to greater complexity in its training and use, exploring its capabilities
with augmented input data such as velocity and orientation, analysing its performance
on vehicles in various datasets, and performing cross tests to assess its generalization
capability.

3. Methodology

This section addresses the methodology used to deploy the model, starting with the
selection of the input and output data, the preprocessing and analysis of the input data
for the BEV datasets used in the study, and the creation of the enhanced model, analysing
the different transformations made to adopt the new information. In addition, the use of
context information through data provided by the digital maps present in each scenario will
be covered, using the lanelet2 library to compute positions with respect to lanes, off-road
zones and routes to goals, among others. The approach of the “post hoc” multimodality
paradigm using the potential goals for each agent in the scenario is fully discussed at the
end of this section.

3.1. Introducing the Problem

Let Xt = {xt, vt, at} be the state of the vehicle at time t, where xt is the position, vt is
the velocity, and at is the acceleration. Let Yt be the set of environmental conditions at time t.
The goal of trajectory prediction is to estimate the future trajectory Tt = {Tt1, Tt2, . . . , TtN}
given the observations Ot = {Xt, Yt} up to time t and a prediction horizon N.

3.2. Inputs and Outputs

In our work, these inputs are the velocity (position increments) and the heading
increment of the agent under study itself, in combination with the same information with
respect to the possible goal it may have in the testing scenario. Thus, Xt = {∆xe, ∆ye, ∆he},
and Yt = {∆xg, ∆yg, ∆hg}. Currently, there are several benchmarks that consider different
time horizons, both for visualization and prediction. TrajNet was followed in the previous
work: a benchmark in which datasets are measured at 2.5 Hz, observing 8 frames (3.2 s)
and predicting 12 frames (4.8).

It is important to highlight the importance of working with increments of positions
and headings, rather than directly with the absolute data. Previous tests showed that the
model failed to learn with this approach, yielding a sub-par performance on the datasets
under analysis. This can show the nature of the data being used, allowing minor variations
in velocity that make it easier to predict a more constant output, aside from data filtering
with Kalman-derived filters, which will tend to follow the preceding frame velocity. Thus,
comparatively, we have also considered the input of the heading increment in degrees in
absolute form, without any previous adaptation that could pre-normalize it, since it will
be performed in the training and testing process. We think that this pre-normalization
developed in 2021 could have affected and worsened the results, as explored in the ongoing
experiments. The complete model overview is depicted in Figure 2.
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Figure 2. Architectural overview: the addition of new inputs.

3.3. Exploring Context Information

After studying the scenarios’ topology for each dataset, and the available data, we
considered the option of incorporating contextual data, taking into consideration that the
datasets used have digital maps within the lanelet2 library framework, allowing access
to context information for each lanelet, such as the distance to the centre of the lane,
distance to the nearest curbs, no-go zones for driving in the case of vehicle agents, etc.
However, powerful information included in these maps concerns the routing graph, such
that knowing the position of an agent permits delimiting the possible routes it can follow
in the scenario, according to the traffic rules. The exact knowledge of the map and traffic
rules also allows to extend to the social factor, where metrics such as IDM (car-following
model [20]) or RSS [21] can be computed to analyse possible dangerous situations involving
near agents.

3.4. The Architecture
3.4.1. Data Preprocessing

For the datasets used it was necessary to carry out a prior stage of data analysis and
extraction in order to properly format them for model input and planned experiments.
During this stage, the parked vehicles present in some recordings were removed, and the
frame rate was taken into account to adapt it to the desired frame rate for the study, with
sequences at 2.5 Hz. Thus, the initial input consists of the location, f rame, track, x, y, heading
structure, to then go through the feature addition module, where the corresponding incre-
ments are calculated and the goal information is introduced based on the map. After this
process, the input to the model includes ∆x, ∆y, ∆h, ∆xg, ∆yg and ∆hg. The heading data
are introduced in absolute values between 0 and 360◦, adapting the entries of each dataset
appropriately, whereas the distance to the centre of the lane in the corresponding tests are
entered in modulus and SI units.

3.4.2. Details

The architecture from [1] was maintained, with the addition of an L2 loss that includes
position increments for improved independence of each position, as well as normalized
heading. The dmodel was set to 512, with 6 layers and 8 attention heads. A warm-up period
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of 10 epochs was implemented, employing a decaying learning rate in the subsequent
epochs.

3.5. Post Hoc Multimodality

To assess the model’s ability to know the intrinsic structure of the scenario without
receiving explicit information about it, a “post hoc multimodality” approach was adopted.
This consisted of generating five trajectories for each of the goals existing in the test scenario.
This was calculated through the routes present in the route graph for each scenario of the
inD and rounD datasets. Table 1 shows the number of routes and goals present in each
scenario.

Table 1. Number of routes and global goals per scenario and dataset.

Dataset Scenario # of Routes # of Goals

inD: 1 13 4

inD: 2 12 4

inD: 3 6 3

inD: 4 12 3

rounD: 0 36 4

rounD: 1 17 4

rounD: 2 17 4

4. Experiments and Results
4.1. Datasets

In addition to pedestrian-centric approaches, the NGSIM datasets [22,23] were pio-
neers in covering highway areas, with information obtained from cameras mounted on
a skyscraper. Several multi-agent datasets have been developed over the past few years,
with a focus on highway scenarios, such as the highD dataset [24] for highway vehicle
trajectory prediction. This dataset provides aerial images obtained using a drone located
over various locations of the German autobahn, with vehicle labelling ensuring an error
below 10 cm. The dataset provides a total of 147 h of drive time on over 100,000 vehicles.
The authors of this dataset went further and expanded the concept to urban scenarios, with
the inD [25] and rounD [26] datasets recording different intersections and roundabouts,
respectively, as well as the novel exiD [27], that covers some stretches at mergings. The
Interaction dataset [28] combines all these scenarios, including ramp merging, signalized
intersections, and roundabouts. This dataset also provides a diverse range of driving
behaviours, including critical manoeuvrers, and even accidents. These situations add value
to a trajectory prediction solution and should be evaluated in a qualitative manner. Table 2
overviews the datasets used to develop the experiments.

Finally, while 2D datasets taken from drones or fixed locations from a bird’s eye view
are relatively easy to create and label, the ultimate goal is to train models that can be ported
to vehicles equipped with onboard sensors and tested in datasets such as NuScenes [29],
Argoverse [30] or Prevention [3].

4.2. Goal Analysis

Goal evaluation for each dataset was carried out automatically on the routes contained
in the digital map graphs for each scenario. The training was carried out with the real target,
and then tests were performed for each of the scenario targets, generating five trajectories
for each one and choosing the ones with the lowest error. This approach brings variability
to the results and a “post hoc multimodality” method similar to that conducted in other
published research, differing in that in this case we are sampling directly in the tests with
the possible targets present in each map rather than using a distribution for each mode.
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Table 2. Datasets used in this work.

Dataset inD rounD Interaction

Country Germany Germany
USA

Germany
China

Locations urban intersections (4)
(sub-)urban

roundabouts (3)

roundabout (5),
intersection (4),

highway (2)

# of Tracks 11,500 13,746 40,054

Road User Types pedestrian, bicycle,
car, truck, bus

pedestrian, bicycle,
motorcycle, car,

van, truck,
bus, trailer

pedestrian/bicycle,
car, truck

Data Frequency 25 Hz 25 Hz 10 Hz

Maps yes yes yes

4.3. Evaluation Metrics

The metrics employed are the state-of-the-art standards for the datasets consid-
ered here, average displacement error (ADE) and final displacement error (FDE). The
ADE/MAD calculates the difference in the L2 norm between the 12 points of the pre-
dicted trajectory and compares them with the respective ground truth in metres, while the
FDE/FAD only accounts for the last observation of this prediction. Thus, the ADE indi-
cates a general fit of the predicted and actual trajectories. This can be questionable, as the
predicted trajectories cannot deviate too far from the actual trajectory but enter prohibited
zones for the corresponding agent, leading to situations where the predictions for vehicles
end up entering pedestrian pavements. Due to this, other metrics are considered in this
work, such as the off-road rate or miss-rate, that will be explored in future tests with the
datasets that embody them. The experiments performed in this case (i.e., for quantitative
analysis) have been deployed with the real goal corresponding to each agent, while the
complete analysis of the “post hoc multimodality” is reserved for the qualitative analysis.
Implementing typical metrics, such as min-ADE, are more commonly used in other datasets
than the ones involved in our work.

4.4. inD: Comparative Results

Using the same data split used by the authors of the DCENet to make an objective
comparison, we obtained comparative analysis results for the inD dataset, as shown in
the Table 3. These results include all agent types, not just vehicles, meaning the goal
approach is less effective than splits that include vehicles only, as discussed later. This
dataset includes parts of the test scenarios in the training split, so the model is already
familiar regarding the trajectories that agents can perform, which, when combined with
the fact that pedestrians are also being evaluated, reduces global errors. The Goal-TF
model still outperforms the “typical” architectures, S-LSTM and S-GAN, and improves
the results of their homonymous TFs which include less information; however, the model
still underperforms against AMENet and DCENet. However, we can appreciate that the
inclusion of the target has been positive, reducing the FAD by more than 20 cm with respect
to the Oriented-TF. In the following experiments the set of tested agents will be reduced to
vehicles (cars, trucks, vans, trails, buses, etc.).
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Table 3. General performance.

InD Average (MAD/FAD)

S-LSTM 1.88/4.47

S-GAN 2.38/4.66

AMENet 0.73/1.59

DCENET 0.69/1.52

Vanilla-TF 1.07/2.65

Oriented-TF 1.02/2.57

Goal-TF 0.94/2.34

4.5. Testing in Different Datasets
4.5.1. Single Dataset Tests

This section reports the results of the leave-one-out (LOO) technique for the inD, rounD
and Interaction datasets for their intersection and roundabout variants, compared with the
Vanilla and Oriented models, where the heading is introduced as additional information.
As shown in Table 4, the Goal-TF model is better in all cases than the other models, except
in the Interaction-GL scenario, where the Oriented model stands out. The improvements
are substantial, with a difference greater than 4 m in the FDE in some experiments. The
inclusion of the target is considered beneficial in terms of the additional information that
the network is able to learn and understand for trajectory prediction.

Table 4. Single dataset tests.

Training // Test Vanilla-TF
ADE / FDE

Oriented-TF
ADE / FDE

Goal-TF
ADE / FDE

inD: 123 // 4 7.67/17.22 7.71/16.83 6.61/13.90

inD: 134 // 2 2.80/7.46 3.47/9.02 2.62/6.43

inD: 234 // 1 1.91/5.18 1.89/5.14 1.61/3.97

rounD: 01 // 2 6.59/16.87 6.62/17.09 5.26/11.81

rounD: 02 // 1 6.64/17.04 6.88/17.53 5.05/11.76

rounD: 12 // 0 6.68/16.71 7.98/19.82 7.50/15.06

INT-intersection:
EP0-EP1-MA // GL 2.54/6.95 2.10/5.66 2.36/6.18

INT-roundabout:
SR-FR-EP-OF // LN 4.46/11.65 3.81/9.51 2.56/6.27

INT-intersection:
MA-GL-EP0 // EP1 3.27/8.17 2.80/7.16 1.96/4.94

INT-roundabout:
LN-SR-FT-EP // OF 4.27/11.63 3.68/10.11 2.75/6.66

4.5.2. Mixing Datasets: Similar Scenarios of Different Datasets

In the case of cross-dataset generalization, it seems that the choice of method when
introducing additional information may penalize the Goal model, with the Vanilla model
remaining the best option if transfer learning between datasets becomes the preferred
method, as shown in the Table 5.
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Table 5. Equivalent scenario tests (training on an entire dataset).

Training // Test Vanilla-TF
ADE/FDE

Oriented-TF
ADE/FDE

Goal-TF
ADE/FDE

inD // INT-int 3.12/8.10 4.89/10.87 3.57/8.58

INT-int // inD 4.04/10.10 4.24/10.32 3.09/7.52

rounD // INT-round 3.19/8.34 5.18/11.72 5.69/12.59

INT-round // rounD 5.30/14.13 6.99/16.54 3.48/8.58

4.6. Qualitative Results

Apart from the quantitative results measured by the corresponding metrics, it is
necessary to assess thoroughly how an agent actually behaves in practice when a specific
situation occurs in a particular scenario; for example, at an intersection with different
exits. Figure 3 shows an instance prior to a turn where the vehicle has slowed down when
approaching the intersection. Thus, it can be seen how the prediction can yield various
results depending on the target in question. In one case, the vehicle will continue straight
ahead, while in another the prediction outputs the vehicle turning in one way or the other.
However, at other times the model will also be completely wrong, leading to completely
erroneous predictions, such as when the vehicle is meant to continue straight ahead and the
prediction is a turning prediction, or vice versa. Figure 4 briefly shows multiple trajectories
generated at the approach of a roundabout according to the selected goal, including the
option of a complete turn to change direction.

(a) Coincident trajectory. (b) Bad decision in prediction.

Figure 3. Cont.
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(c) Trajectories predicted when selecting another goal.

Figure 3. Sample outputs for leave-one-out experiments using the inD dataset | location 3. Observed
trajectory is depicted in blue, ground truth in green and predicted trajectory in orange (view legend).

Figure 4. Instances before entering a roundabout depending on the goal in the rounD dataset.

5. Conclusions and Future Work

The experiments performed showed that the inclusion of context variables relative
to the goal obtained from the digital map routes linked to each scenario improved the
results compared to models that did not use them. This allowed for multimodal trajectory
generation, an important point that should be developed in future work. The generalization
of this model was also discussed, with tests on different datasets highlighting its high
versatility. In future, the challenge to integrate social information needs to be addressed,
exploring a way to introduce simultaneous data from several agents to allow for the
generation of socially aware trajectories. Furthermore, tasks such as the extension of
multimodality tests to all datasets, providing specific metrics, or extending the datasets to
other existing datasets in the field, such as NuScenes or Argoverse, is still pending. Finally,
a viability study would be beneficial for the implementation of such a system for real-time
inference using real-time information collected by an vehicle to demonstrate whether these
models are ready to be deployed in the real world.
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